Instructor: Binod Tiwari, Ph.D.
Pinaki Chakrabarti, Ph.D., S.E.

Office: E-419/ E-314
Phone: (657) 278- 3968/3729
Fax: (657) 278- 3916
Email: btiwari@fullerton.edu
Pchakrabarti@fullerton.edu

Prerequisite
EGCE 324, EGCE 408

Text Book

Reference Materials
- Handouts, website URLs, visuals, and other materials will be provided during class or posted on Blackboard.

Course Description
Design of footings and retaining walls, Mat and pile foundation for structures, Design project to standards of professional practice using latest codes and standards, Consideration for safety, reliability, and cost.

Course Learning Objectives
This course will provide the students with theory and experience-based knowledge necessary to analyze and design civil engineering structures such as retaining walls, excavation bracing systems, and shallow and deep foundations. Upon completion of this course the students will be able to:

- Investigate and evaluate subsurface soil conditions using techniques of geotechnical engineering, structural engineering, and construction engineering.
Estimate soil properties from sources of information such as boring logs, visual descriptions, and index test results, in combination with textbooks and engineering manuals.

Evaluate bearing capacity and settlement failure condition for shallow and deep foundations.

Select the most suitable type of foundation for given site condition and design.

Estimate total and effective horizontal earth pressures.

Design retaining walls, sheet piles, and braced excavation supports.

Topics Covered in Lecture
- Review of Physical Properties of Soil
- Review of Shear Strength of Soil
- Sub-soil Exploration
- Bearing Capacity of Shallow Foundation
- Settlement of Shallow Foundation
- Mat Foundation
- Estimation of Lateral Earth Pressure
- Design of Retaining Walls
- Design of Sheet Piles
- Design of Braced Excavation Supports
- Design of Anchor Bulkhead
- Analysis and Design of Pile Foundations
- Design of Drilled Shafts

Topics Covered in Lab
- Development of a Geotechnical Report
- Design of a Shallow Foundation
- Design of a Deep Foundation
- Design of a Retaining Wall
- Design of a Braced Excavation Support
- Design of a Sheet pile

Program Educational Objectives
The educational objectives of the program are as follows:

A) Technical Growth: Graduates will be successful in modern engineering practice, integrate into the local and global work force, and contribute to the economy of California and nation.

B) Professional Skills: Graduates will continue to demonstrate the professional skills necessary to be competent employees, assume leadership roles and have career success and satisfaction.

Assessment of Student’s Learning
The effect of this course on student’s learning ability will be assessed according to the following criteria:

- An ability to apply knowledge of mathematics, science, and engineering.
- An ability to design a system, component, or process to meet desired needs.
- An ability to engage in life long learning.

Homework and Quizzes
There will be several homework assignments during the course of the semester. Homework is due at the beginning of the class, on due date. There will be no credit for the late homework submissions, unless accompanied with a university approved excuse. Homework will be posted on the blackboard every week. Students should check the blackboard at least once a day. There will also be a number of quizzes of 5 minutes duration each. These quizzes will be based on the contents covered in the class. Homework should be submitted neatly in a clean paper, one side of which should be left blank. New problem should be started on the fresh page. Homework submission format and guidelines should be strictly followed.

Class Project
Students will be provided with a compilation of field geotechnical investigation reports. Each student is responsible to use those reports to make a complete geotechnical report and design foundation or retaining wall or sheet pile for the assigned loading condition.
Scheduled Exams
There will be two mid-term exams. No make up exams will be conducted. However, if one misses a midterm exam for any university approved reasons, weight of the other midterm exam will be increased. However, students should inform the instructor in written well on time to get approval for such reasons. Missing of exams for non-approved reasons counts as zero score. The final exam will be comprehensive and will cover the contents covered in the entire class.

Grading Policy
The final letter grade will be computed using the following criteria:

- Homework/Quizzes: 20%
- Midterm Exam I (February 23, 2010): 20%
- Midterm Exam II (March 25, 2010): 20%
- Final Exam (May 18, 2010, 17:00 – 18:50): 30%
- Project: 10%

Letter Grades

- A’ (> 97%)
- A (93 – 96.9%)
- A´ (90 – 92.9 %)
- B’ (87 – 89.9%)
- B (83 – 86.9%)
- B´ (80 – 82.9 %)
- C’ (77 – 79.9%)
- C (73 – 76.9%)
- C´ (70 – 72.9 %)
- D’ (67 – 69.9%)
- D (63 – 66.9%)
- D´ (60 – 62.9%)
- F (< 60%)

Honor Code

- “California State University, Fullerton's Honor Code” explained in UPS 300.021 applies to all works performed in this class including homework, quizzes, and examinations. Students should strictly follow those codes.
- This is a professional course. A learning environment will be created in each class for motivated students; therefore professional conduct is expected of all participants. Professional conduct extends to use of cell phones, personal computers, iPods and PDAs during lecture. Students violating such professional conducts are subject to expulsion from the class.

Drop Policy
The Spring 2010 Schedule contains the University Regulations and Deadlines for dropping this course. Students should note that the department stamp and/or department chair’s signature is also required in addition to instructor’s signature to drop the course.

Students With Special Needs
Students who need adaptations or accommodations because of a disability (e.g. learning, attention deficit disorder, psychological, physical, etc.), or have emergency medical information to share with the instructor, or need special arrangements in case the building must be evacuated, are requested to make an appointment to discuss their needs with the instructor during the first week of classes.
<table>
<thead>
<tr>
<th>Week</th>
<th>Day</th>
<th>Topic/s</th>
<th>Section Textbook</th>
<th>Due Homework*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>January 26</td>
<td>Course Overview</td>
<td>Handout</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Geotechnical Properties of Soil</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>February 2</td>
<td>Shear Strength of Soil</td>
<td>1</td>
<td>Home Work # 1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Subsoil Exploration</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>Subsoil Exploration</td>
<td>2</td>
<td>Home Work # 2</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Bearing Capacity of Shallow Found.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>February 16</td>
<td>Faculty Furlough Day</td>
<td>No Class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Review for Mid-term Exam 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>Mid-term Exam 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Design of Shallow Foundation#</td>
<td>3</td>
<td>Home Work # 3</td>
</tr>
<tr>
<td>6</td>
<td>March 2</td>
<td>Faculty Furlough Day</td>
<td>No Class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Settlement of Foundation on Sand</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Settlement of Foundation on Clay</td>
<td>5</td>
<td>Home Work # 4</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Settlement of Foundation on Clay</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Design of Combined Footing</td>
<td>6</td>
<td>Home Work # 5</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Design of Mat Foundation</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>Review for Mid-term Exam 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Mid-term Exam 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>March 29 – April 4</td>
<td>Fall Recess</td>
<td>No Class</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>April 6</td>
<td>Design of Mat Foundation#</td>
<td>6</td>
<td>Home Work # 6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Faculty Furlough Day</td>
<td>No Class</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>Pile Foundation</td>
<td>11</td>
<td>Home Work # 7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Pile Foundation</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Drilled Shaft</td>
<td>12</td>
<td>Home Work # 8</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Lateral Earth Pressure</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>Lateral Earth Pressure</td>
<td>7</td>
<td>Home Work # 9</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Design of Retaining Wall</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Design of Retaining Wall#</td>
<td>14</td>
<td>Home Work # 10</td>
</tr>
<tr>
<td>15</td>
<td>May 4</td>
<td>Design of Sheet Pile</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>Design of Excavation Bracing</td>
<td>10</td>
<td>Home Work # 11</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Review for Final Exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 18</td>
<td>(17:00 – 18:50)</td>
<td>Final Exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Homework due date. For example Homework # 1 is due on February 2.
* Lead instructor – Dr. Chakrabarti
Emergency Procedures Notice to Students

The safety of all students attending California State University Fullerton is of paramount importance. During an emergency it is necessary for students to have a basic understanding of their personnel responsibilities and the University’s emergency response procedures. In the event of an emergency please adhere to the following guidelines

Before an emergency occurs-

1. Know the safe evacuation routes for your specific building and floor.
2. Know the evacuation assembly areas for your building.

When an emergency occurs-

1. Keep calm and do not run or panic. Your best chance of emerging from an emergency is with a clear head.
2. Evacuation is not always the safest course of action. If directed to evacuate, take all of your belongings and proceed safely to the nearest evacuation route.
3. Do not leave the area, remember that faculty and other staff members need to be able to account for your whereabouts.
4. Do not re-enter building until informed it is safe by a building marshal or other campus authority.
5. If directed to evacuate the campus please follow the evacuation routes established by either parking or police officers.

After an emergency occurs-

1. If an emergency disrupts normal campus operations or causes the University to close for a prolonged period of time (more than three days), students are expected to complete the course assignments listed on the syllabus as soon as it is reasonably possible to do so.
2. Students can determine the University's operational status by checking the University's web site at http://www.fullerton.edu, calling the University's hotline number at 657-278-0911, or tuning into area radio and television stations. Students should assume that classes will be held unless they hear or read an official closure announcement.

EMERGENCY CALLS

DIAL 9-1-1
All campus phones and cell phones on campus reach the University Police Department

Non-emergency line: (657) 278-2515

24-hour recorded emergency information line: (657) 278-0911
(657) 278-4444